THE SMARTS OF 'SMART CONTRACTS': RISK MANAGEMENT CAPABILITIES AND APPLICATIONS OF SELF-EXECUTING AGREEMENTS # BYRON TURNER* Smart contracts represent a form of contract automation with a considerable breadth of anticipated applications. These range from more tangible, traditional agreements such as supply contracts, many elements of which are readily automatable, to more complex candidates in insurance and financial markets.² This article seeks to provide background for legal practitioners to understand the nature of smart contracts, the commercial case behind their applications, as well as the benefits and challenges associated with implementation. The article first canvasses the development of smart contracts, discussing the origins of the technology and the role of blockchain in its applications, illustrated practically through the AgriDigital trial. The article then seeks to frame the advantages associated with implementation by reference to risk management theory, given its potential benefits in preemptive risk identification and analysis. In light of the development of the Australian National Blockchain, various potential smart contract applications are considered across sectors including in supply chain management, insurance contracts and financial markets. The risk management capabilities and legal implications associated with these discrete applications are then discussed, informing a broader consideration of the impact of smart contracts on legal practice. ^{*} Byron Turner (LLB Hons I, BMathAdv) is a graduate of the University of Wollongong and Solicitor at Herbert Smith Freehills (Sydney). His research interests include areas at the intersection of law and information sciences, including intellectual property, digital law and smart contracts. ¹ Buwaneka Arachchi, 'Chains, Coins and Contract Law: The Validity and Enforceability of Smart Contracts' (2019) 47(1) Australian Business Law Review 40, 40; Michael Henke and Axel Schulte, 'Blockchain and Smart Contracting: Applications and Use Cases in Logistics and Supply Chain', (Lecture, *Fraunhofer*, 19 February 2019) http://publica.fraunhofer.de/dokumente/N-541197.html. ² Robert Boadle, 'Commercial and Finance Law: Financial Technology in the Securities Markets' (2016) 27(4) Journal of Banking and Finance Law and Practice 333, 335. The Australian National Blockchain is an industry-led project seeking to establish a platform enabling smart contract use in mainstream legal practice. Primary members of the consortium include IBM, CSIRO, Herbert Smith Freehills and King & Wood Mallesons. # I THE SMARTS OF 'SMART CONTRACTS' ### A Introduction to Smart Contracts Smart contracts are computer programs that embody the execution of a contractual agreement, enabling the automation of selected clauses such that the contract is able to 'self-execute'. For lawyers, the basic premise of a smart contract may be considered as the automation of familiar contractual terms such as conditions precedent in accordance with an algorithm. Such clauses are directly referable to Boolean logic imbued in programming tools such as 'if statements' and are therefore illustrative of the intended self-executing function of smart contracts. For example, a supply contract may determine that payment be made upon receipt of goods in accordance with a programming statement to the effect of 'if A, then do B'. In this scenario the input, the goods delivered, is verified and the outcome, payment to the supplier, is automatically produced as a direct result. This section will detail the development of smart contracts in the interests of informing preliminary discussion of the reasons underpinning implementation in mainstream legal practice as well as anticipated legal and regulatory implications. The themes canvassed in this chapter will subsequently serve as a foundation for the key focus of this article, being the risk management applications of smart contracts (Part II) and discussion of factors relevant to the selection of appropriate use cases (Part III). ⁴ Paul Melican et al, 'The Law and the Legal Profession in the Next Decade: The Student's Perspective' (2016) 90(6) Australian Law Journal 434, 439. ⁵ Arachchi (n 1) 45. Boolean logic is logic determining the truth or otherwise of a statement in accordance with Boolean operators 'AND', 'OR' and 'NOT'. ⁶ Arachchi (n 1) 45. See also Rachel Lidgate and Charlie Morgan, 'Hashing Out the Implications of Smart Contracting Under English Law', *Herbert Smith Freehills* (Web Page, 2 October 2018) https://www.herbertsmithfreehills.com/latest-thinking/hashing-out-the-implications-of-smart-contracting-under-english-law. It is noted that industry-based materials of this type are relied on by the author in relation to practical matters where industry insight is key to understanding current views on smart contract applications, particularly where the matter in question has not been subject to significant academic consideration. # B History and Development of Smart Contracts Whilst smart contracts are a relatively novel feature of Australia's mainstream legal landscape, their broader applications have developed over a period of approximately 25 years and originated as a creation of legal scholar, computer scientist and cryptographer Nick Szabo.⁷ In 1994, Szabo coined the term 'smart contract' as 'a computerised transaction protocol that executes the terms of a contract.⁸ He conceived that the objectives of smart contracts were to satisfy common contractual conditions (such as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious and accidental, and minimize the need for trusted intermediaries. Related economic goals include lowering fraud loss, arbitration and enforcement costs, and other transaction costs.⁹ Szabo's objectives are not simply abstract concepts but are clearly referable to the goals of commercial contracting parties today. It is this congruency that has driven the development of smart contracts in mainstream commercial and legal circles. The turn of the century saw smart contracts brought into popular use, notably through the development of Bitcoin in 2009, 10 although this has largely been restricted to the rise of independent platforms such as NXT and Ethereum. To facilitate mainstream commercial use of smart contracts, attempts have been made in some countries to introduce national blockchain infrastructure. Given these projects are largely still works in progress, it is unclear at this point the degree to which a national platform may succeed in developing widespread use of smart contracts in commercial legal services. ⁷ Stuart Levi and Alex Lipton, 'Introduction to Smart Contracts and Their Potential and Inherent Limitations', Harvard Law School Forum on Corporate Governance and Financial Regulation (Forum Post, 26 May 2018) https://corpgov.law.harvard.edu/2018/05/26/an-introduction-to-smart-contracts-and-their-potential-and-inherent-limitations/. $^{^{\}rm s}$ Henke and Schulte (n 1); Lidgate and Morgan (n 6). ⁹ Henke and Schulte (n 1). Modex, 'A Brief History of Blockchain, Smart Contracts and their Implementation', *Modex* (Web Page, 7 March 2018) https://blog.modex.tech/a-brief-history-of-blockchain-smart-contracts-and-their-implementation-c3ac6f00f014. Bitcoin facilitates execution of simple smart contracts. ¹¹ Ibid. ¹² Karen Andrews, 'Australia Takes the Lead in Blockchain Globally', *Ministers for the Department of Industry, Science and Technology* (Media Release, 9 April 2019) <https://www.minister.industry.gov.au/ministers/karenandrews/media-releases/australia-takes-lead-blockchain-globally>; See also Royal Canadian Mint, 'nanoPay Acquires MintChip (TM) from the Royal Canadian Mint' Royal Canadian Mint (Web Page, 12 January 2016) https://www.mint.ca/store/news/nanopay-acquires-mintchiptm-from-the-royal-canadian-mint-26400032#.XbKVTS1L10s>. MintChip was developed by the Royal Canadian Mint as a digital payment technology with low barriers to entry, specifically designed to comply with national regulatory standards including anti-money laundering and financial services legislation. ### C The Australian National Blockchain The infrastructure facilitating smart contract use is 'Distributed Ledger Technology', more commonly known as blockchain technology. In simple terms, a blockchain is a decentralised register or database in which individual transactions form *blocks* that, once verified, are added together to create a sequential *chain*. Smart contracts are the programs stored on a blockchain, executed in accordance with pre-determined rules to which the parties agree. The Australian National Blockchain ('ANB') is a project currently undertaken by a consortium of industry members, including IBM, CSIRO, Herbert Smith Freehills and King & Wood Mallesons. The Law Council of Australia cites CSIRO in describing the ANB as a significant new piece of infrastructure in Australia's digital economy, enabling companies nationwide to join the network to use digitised contracts, exchange data and confirm the authenticity and status of legal contracts.¹⁶ The platform is unique in that it is publicly available with low barriers to entry and its design is intended specifically for Australian legal compliance.¹⁷ This, in theory, enables a legal and regulatory framework to form organically around the platform, mitigating the need to rely on ad hoc law reform arising from disputes in independent smart contract transactions. It is noted that ultimately, the ANB is a business venture with specific commercial and legal outcomes at its core. In this respect, design of the platform has stemmed from anticipated and desired use cases for both blockchain and smart contract technology, such that high-level consideration of legal implications and theoretical frameworks is not the central concern of ¹⁸ Balázs Bodô, Daniel Gervais and João Pedro Quintais, 'Blockchain and Smart Contracts: The Missing Link in Copyright Licensing?' (2018) 26(4) *International Journal of Law and Information Technology* 311, 314; Lidgate and Morgan (n 6). ¹¹ Robert Size, 'Taking Advantage of Advances in Technology to Enhance the Rule of Law' (2017) 91(7) Australian Law Journal 575, 581. ¹⁵ Eliza Mik, 'Smart Contracts: Terminology, Technical Limitations and Real World Complexity' (2017) 9(2) *Law, Innovation and Technology* 269, 269-70. Law Council of Australia, 'Futures Summit' (Background Paper, Law Council of Australia, 13 September 2018) 33 https://www.lawcouncil.asn.au/publicassets/401e7ec2-c104-e911-93fc-005056be13b5/Background%20Paper%20-%20Futures%20Summit.pdf; Lidgate and Morgan (n 6). Mark Staples et al, 'Risks and Opportunities for Systems Using Blockchain and Smart Contracts' (Technical Report, CSIRO Data61, May 2017) https://www.researchgate.net/profile/Sara-Falamaki/publication/320619389_Risks_and_opportunities-for-systems_using_blockchain-and-smart-contracts.pdf>. The reality of the ANB's compliance with existing legal and regulatory frameworks is unconfirmed. developers. Legal academic analysis of smart contracts in the context of the ANB will therefore naturally be reactive in nature, with much dependent on the final form of implementation. # D Blockchain-Mere Puff? Doubts have been raised as to whether blockchain technology represents the most appropriate means of facilitating smart contracts in mainstream legal practice. ¹⁸ This reflects broader concerns for the blockchain 'hype cycle', which may mask deficiencies in the technology, or otherwise work against other more appropriate alternatives. ¹⁹ Despite security concerns, ²⁰ there are a number of potential advantages of blockchain technology that render it appropriate as a tool for smart contract implementation. Data is stored and communicated between participating parties in a transparent manner. ²¹ The distributed ledger provides protection from loss through accident or malevolence, and the chain creates an immutable transaction record. ²² This imputes an element of traceability that assists with transparency and the identification of fraudulent activities, as was demonstrated in the Silk Road incident. ²³ The inclusion of computer code in the data stored has also been considered 'ideal for implementing "smart" contracts'. ²⁴ Further analysis of the suitability of blockchain technology is beyond the scope of this article; however, it is noted as a relevant consideration in the context of broader smart contract implementation. ²⁵ contracts-for-lawyers-with-no-code-yet-only-concept/>. _ In a 2018 submission to the Senate, the Digital Transformation Agency stated that 'for every use of blockchain you would consider today, there's a better technology'. See Finance and Public Administration Legislation Committee, Parliament of Australia, *Official Committee Hansard* (Parliamentary Transcript, 23 October 2018) 19 https://parlinfo.aph.gov.au/parlInfo/download/committees/estimate/6cc84198-059e-4de7-95b6-c1479d5e2584/toc-pdf/Finance%20and%20Public%20Administration%20Legislation%20 Committee_2018_10_23_6694_Official.pdf>. ¹⁹ Arachchi (n 1) 40, 48. See Mike Orcutt, 'Once Hailed as Unhackable, Blockchains Are Now Getting Hacked', *MIT Technology Review* (Web Page, 19 February 2019) https://www.technologyreview.com/2019/02/19/239592/once-hailed-as-unhackable-blockchains-are-now-getting-hacked/. There are also various instances in which blockchain technology has facilitated illegal activities, for example the Silk Road scandal. See David Adler, 'Silk Road: The Dark Side of Cryptocurrency', *Fordham Journal of Corporate and Financial Law* (Blog Post, 21 February 2018) https://news.law.fordham.edu/jcfl/2018/02/21/silk-road-the-dark-side-of-cryptocurrency/. Thomson Reuters, Law Relating to Banker and Customer Update: Update Summary August 2019 (online, 16 August 2019) [4.3384]. ²² Ibid. ²³ Adler (n 20). ²⁴ Thomson Reuters (n 21). ²² See David Gerard, 'The Australian National Blockchain: Centralised IBM "Smart Contracts" for Lawyers—With No Code Yet, Only Concept', *David Gerard* (Blog Post, 20 November 2018) . ¹¹² Norton Rose Fulbright (n 108). ¹¹³ Ibid. ¹¹⁴ Ibid. insurance operates on the consumer level, the potential for smart contract use to improve customer experience and interaction with the insurance product is another purported benefit.¹¹⁵ A challenge common to general smart contract implementation is the difficulty in representing the nuance of contractual drafting in code. An example in the field of insurance is seen in provisions based on the principle of 'good faith', such as the right of the insurer to avoid the contract in the event that the policyholder has acted fraudulently in 'overinsuring' the subject property. ¹¹⁶ Nuances of insurance contracts such as disclosure obligations, which are often conditions precedent for payment under the policy, as well as the unpredictability of underwriting decisions and regulatory factors that affect the policy, create complexity in automating the agreement from the outset. ¹¹⁷ In this respect, it would be expected that a hybrid structure between coded and natural language contract be adopted so as to enable the flexibility afforded by natural language expression. ¹¹⁸ A practical issue also arises in that overcoming these complexities will require significant investment by industry members. ¹¹⁹ As noted above, the repetitive nature of the bulk of transactions at the consumer level and the potential value gained in expediting these processes may attract the required expenditure. Initial anticipated uses are primarily concerned with short-term risks, ¹²⁰ including property catastrophe risks and applications in cargo, contingency, aviation or agriculture insurance. ¹²¹ This is largely due to the simplicity of the transactions involved and the benefits gained from improved information flow as a result of integrating parties through the blockchain platform. ¹²² These benefits appear particularly clear in the case of individual policyholders. The implementation of 'smart' processes may relieve the disclosure burden for the insured, as well as the reliance by the insurance company on the insured for information in this respect. ¹²³ An example currently contemplated by Lloyd's is 'smart flood insurance'. In this example, a tamper-proof flood sensor integrated into the blockchain ecosystem would expedite claims processes by reducing the ¹¹⁵ Ibid. ¹¹⁶ Borselli (n 107) 20. Norton Rose Fulbright (n 108). ¹¹⁸ See above nn 34-42 and accompanying text. ¹¹⁹ Norton Rose Fulbright (n 108). ¹²⁰ Ibid ¹²¹ Lloyd's, 'Triggering Innovation: How Smart Contracts Bring Policies to Life' (Emerging Risks Report, 2019) 7. ¹²² Ibid 18. ¹²³ Ibid. amount of information required from the insured in the event of a claim, whilst also facilitating calculation of more accurate premiums.¹²⁴ Smart contracts also have anticipated applications in transactions involving insurance-linked securities. A trial run by Allianz in 2016 tested blockchain-based smart contracts in a mock natural catastrophe swap transaction. The trial reportedly demonstrated the acceleration in processing and settlement of payments, which is of particular importance in markets for cat bonds and swaps given the volatile nature of the underlying risks. These types of benefits would appear to represent a source of commercial value that would be magnified by the industry-wide application of smart contracts given the uniform nature of the transactions involved. ### 2 Risk Management Smart contracts hold significant potential in meeting the risk management goals of both insurers and the insured. In general terms, Lloyd's has recognized the ability of smart contracts to facilitate transactions that might otherwise be prohibitively costly by mitigating default risk.¹²⁷ Further benefits include the mitigation of risks stemming from delay or human error in the underwriting process.¹²⁸ From the perspective of insurance companies a major risk is that of adverse selection, which often arises from information asymmetry between the insurer and insured. Such risks may be mitigated by the information flow facilitated by smart contracts and blockchain technology. An example provided by Lloyd's is in relation to insurance claims arising from catastrophic events such as a wildfire. In this case, systems collecting data including indicators of wind, smoke, and floating embers, along with appropriate metrics for frequency and severity, would clarify the extent of the risk for the insurer across the class of affected individuals. Optimisation of these systems would carry potential flow-on effects in facilitating risk management from the insured's perspective, with the insurer, in theory, able to provide more ¹²⁴ Ibid. Jonathan Gould, 'Allianz Expects Blockchain Tech to Expedite Cat Bond Deals', *Insurance Journal* (Web Page, 15 June 2016) https://www.insurancejournal.com/news/international/2016/06/15/416971.htm. ¹²⁶ Ibid. ¹²⁷ Lloyd's (n 121) 13. ¹²⁸ Gould (n 125). ¹²⁹ Vaughan and Vaughan (n 56) 43. ¹³⁰ Lloyd's (n 121) 31. ¹³¹ Ibid. appropriate responses. For example, upon receipt of data indicating the presence of a peril or hazard, an automatic notification could be generated according to a basic coded smart contract provision to the effect of 'if A, then B', where: A represents a determinant of the risk faced by the insured, such as geographical proximity to the peril or hazard; and B represents the automatic notification, for example via email, relevant to the management of the risk. Sample notifications provided by Lloyd's, with varying levels of specificity, include: 133 - 'We are aware this event may have affected you, we wanted to touch base with you to check if you need assistance.' - 'Water levels in the river are projected to overtop and flood the property. Do you have a plan to move your car collection? If not, do you need assistance?' Whilst this may appear to be a superficial means of improving customer service, it carries potentially significant consequences in the field of personal risk management. Individuals suffer from specific vulnerabilities that render initial responses to sources of risk vital.¹³⁴ Information flow facilitated by the smart contract enables early risk identification in the interests of risk avoidance and reduction.¹³⁵ # 3 Legal Implications The legal implications of smart contracts in insurance are similar to those raised in general. Issues of contractual interpretation are identified where there is divergence between execution of the smart contract and what the parties have intended. A separate issue raised is that of privacy, both on and off-ledger. Implementation of smart contracts in insurance on the consumer level would require agreement to the terms of use of the blockchain platform, including the information stored there. Equally, anticipated integration with other 'InsurTech' that may involve the use of smart devices in a person's home to gather relevant data also raises significant privacy issues. ¹³² Ibid 24-35. ¹³³ Ibid 35. ¹³⁴ Vaughan and Vaughan (n 56) 17. ¹³⁵ Ibid 17-18. ¹³⁶ Lloyd's (n 121) 24, 43. ¹⁸⁷ Ibid 18. See above discussion of 'smart flood insurance': Part III(C)(1). The highly-regulated nature of the insurance industry may hinder or, at the very least, shape smart contract implementation. For example, one of the benefits of smart contract use in insurance would appear to be the centralised collection of all necessary 'risk information' about the insured on the blockchain platform. This theoretically expedites the underwriting process by simplifying the information-gathering phase and reducing reliance on the insured's application or insurance agent's recommendations based on contact with the insured. It is suggested the purest form of smart contract marketplace design optimising commercial efficiency in this respect is one in which 'neither customer nor insurer identifies themselves, and don't need to because the necessary risk information about the insured is on the blockchain, and pay-out by the insurer is guaranteed by the smart contract'. Such a model, however, is likely inconsistent with current regulatory requirements including the best interest duty, 'know-your client' rules, and anti-money laundering regulation. Time will tell whether mainstream use of smart contracts in the insurance industry will successfully integrate with existing regulation. However, what is certain is that the technology carries significant potential to change insurance practices from the perspective of both consumers and insurers. ### D Financial Markets One of the hallmarks of the modern commercial environment is the emergence and expansion of 'fintech' across a broad range of sectors. Fintech represents the application of 'financial technology' designed to compete with traditional methods utilised in the delivery of financial services. The fintech industry in Australia has attracted significant investment and is mainly comprised of many small startup companies, funded by larger corporations with vested interests in the products developed. Blockchain technology, and the use of smart contracts to facilitate the underlying transactions, is an example of fintech that has drawn attention from corporations, governments and regulators alike due to its applications in banking and finance. In this respect, ¹³⁸ Ibid 36. ¹³⁹ Ibid. ¹⁴⁰ Ibid. ¹¹¹ Ian Pollari and Amanda Price, 'Australian Fintech Landscape', *KPMG Australia* (Web Page, 11 September 2018) https://home.kpmg/au/en/home/insights/2017/08/australian-fintech-landscape.html. Fin Tech Australia, 'What is Fin Tech?', Fin Tech Australia (Web Page, 2019) https://fintechaustralia.org.au/learn/>. ¹⁴³ Pollari and Price (n 141). ¹⁴⁴ Boadle (n 2) 335. ¹⁴⁵ Ibid 333. the application of smart contracts to financial markets represents one of the key growth areas for the technology. # 1 Industry Recognition—Benefits and Challenges ASIC has to date recognised the use of smart contracts in foreign exchange trading, securities settlement and debt issuance as discrete applications in the financial sector. ¹⁴⁶ It has also been considered that smart contracts may provide significant value in financial markets including retail and wholesale payments, capital markets, trade finance and transaction banking, as well as in securities markets trading, clearing, custody and settlement. ¹⁴⁷ Blockchain technology has been identified as an alternative to current certification systems employed in financial markets. The value of blockchain in this respect would appear to be in its potential to simplify the complexities of post-trade clearing and settlement processes. This may be manifested in a reduction in intermediary involvement and regulatory oversight, as well as the degree of manual operation required to reconcile the records of the respective parties in this process. In 2016, the ASX engaged fintech company Digital Asset Holdings LLC to replace the Clearing House Electronic Subregister System ('CHESS') with a blockchain-based alternative. Cited outcomes upon successful implementation include: - (a) creation of a common record of asset holdings between competing financial institutions; - (b) mitigating the need for manual adjustment of potentially divergent records between the parties; and - (c) automated tracking of the execution, clearing and settlement phases of transactions. ¹⁵⁰ It is the commercial efficiencies achievable by streamlining post-trade processes that have attracted investment by financial institutions and intermediaries due to the costs associated with meeting regulatory standards in this transaction-phase.¹⁵¹ Mitigating associated complexities Arachchi (n 1) 40, citing Australian Securities and Investments Commission, 'Evaluating Distributed Ledger Technology', *Australian Securities and Investments Commission: Information Sheet 219* https://asic.gov.au/regulatory-resources/digital-transformation/evaluating-distributed-ledger-technology/. ¹⁴⁷ Boadle (n 2) 333. ¹⁴⁸ Ibid 334. ASX, 'CHESS Replacement: New Scope and Implementation Plan', *ASX* (Consultation Paper, April 2018) 4 https://www.asx.com.au/documents/public-consultations/chess-replacement-new-scope-and-implementation-plan.pdf. ¹⁵⁰ Boadle (n 2) 334-5. ¹⁵¹ Ibid 335. through blockchain and smart contract technology would therefore reduce expenses and increase overall profitability of transactions for financial institutions, ^{1,52} particularly when applied to large quantities of similar transactions, as discussed above in relation to applications in insurance. The specifics of the potential benefits derived are perhaps best understood through an illustrative example provided by Boadle in the context of a generic securities trade between buyer and seller. Processes capable of automation may be considered in terms of the execution, clearing and settlement phases of the trade. Prior to execution, the smart contract may provide for certification of the seller's title over the securities, as well as the buyer's financial capacity to purchase the securities (by a logic process comparing total trade price to the amount of funds in the buyer's designated linked account, for example). Following the execution phase, another smart contract process may register title in the securities through an external database, such as the ASX subregister (currently maintained through CHESS) or the issuing party's sponsored subregister. In this respect, clearing and settlement may be near-instantaneous, significantly mitigating systemic and default risk arising from delays between transaction phases. This has been considered to provide significant benefits to both transacting parties and intermediaries, as well as reducing regulatory oversight requirements—features that will lead to long-term reductions in transaction costs. # 2 Risk Management Applications As indicated above, automation of post-execution processes in financial markets carries the potential to render clearing and settlement near-instantaneous processes, which in turn would reduce both systemic and default risk inherent to financial market transactions. Default risk, in particular, would be mitigated in those transactions undertaken with immediate execution intended. The argument for the potential reduction in systemic risk is as follows. The automation mechanisms described impact on two primary transaction processes: firstly certifying 153 Ibid. ¹⁵² **Ibid.** ¹⁵⁴ Ibid. ¹⁵⁵ Ibid; ASX Settlement Corporation, 'CHESS: Clearing House Electronic Subregister System', ASX (Brochure, 2011) 4 https://www.asx.com.au/documents/research/chess_brochure.pdf. ¹⁵⁶ Boadle (n 2) 335. ¹⁵⁷ Ibid. ¹⁵⁸ Ibid 336. ¹⁵⁹ Ibid. the ability of both parties to transact; and secondly executing trades for immediate delivery. In this way, the potential for the financial failure of a discrete number of central counterparties to cause a string of transactions to fail, with the obvious associated macroeconomic impacts, is drastically reduced. On the face of it then, the application of smart contract and blockchain technology in financial markets would appear to carry significant risk management benefits. On both a market-wide and firm-specific level, implementation carries potential for risk control through the avoidance and reduction of specific risks inherent to transactions carried out on financial markets. ### 3 Legal Implications Challenges facing smart contract implementation in financial markets include the ability, from both a regulatory and practical perspective, of parties to conduct transactions through the blockchain without the need for intermediaries from relevant financial institutions to act on their behalf. It has been suggested that this could be achieved through certification procedures embedded in the blockchain that verify the ability of parties to transact, for example by requiring that the buyer demonstrate sufficient funds to meet the transaction price, and that the seller confirm their title to the assets in question. This relies on principles such as the 'trustlessness' of the blockchain whereby trust in counterparties or intermediaries is replaced by trust in the technology. Having parties provide mutual consensus as to the prima facie validity of the transaction may assist in bridging the gap with current banking and finance regulation.¹⁶⁴ This view is consistent with literature that has considered that despite initial incompatibilities, blockchain technology applied to financial markets may present long-term benefits to regulators who adopt this technology, increasing efficiency whilst enabling co-ordination with international ¹⁶⁰ Ibid. ¹⁶¹ Ibid 335. $^{^{162}}$ Ibid ¹⁶³ Mik (n 15) 275-6. See above Part II(B)(1). ¹⁶⁴ Boadle (n 2) 336. counterparts. In this sense, smart contract compatibility may be facilitated by developing regulatory technologies—a process that is already underway. 66 # E Concluding Remarks on Use Cases The above use cases are demonstrative of the potential applications of smart contract technology across legal and commercial sectors. Various common issues are evident, possibly the most pertinent of which is the need for trusted third parties to facilitate smart contract transactions. This is largely a matter of construction of the ANB platform in Australia and the implementation of trust protocols inherent to blockchain technology, including asymmetric encryption by which the reliability of cryptographic signatures as a secure means of identifying participants plays an important role in fostering trust in the platform. A further theme common across use cases is the applicability of smart contracts to circumstances in which there are a large quantity of similar transactions benefiting from automation due to the simplicity of execution. What is also apparent, however, is the need for nuanced approaches, both in regulation and smart contract design, across sectors to ensure successful integration of the technology due to the clear absence of a 'one-size-fits-all' approach to smart contract implementation. # IV CONCLUSIONS This article has sought to canvass key themes and issues arising from the implementation of smart contracts in mainstream commercial legal practice. Given the technical nature of the subject matter there is a clear necessity to deal with the 'nuts and bolts' of smart contracts in both a commercial and legal sense so as to facilitate engagement with the process of implementation in practice. Building on this foundation, a number of practical and theoretical issues are elucidated as common themes in smart contract development. Consideration of the risk management applications of smart contracts in commercial practice provides a theoretical grounding for practical benefits associated with implementation, beyond general notions of 'efficiency' and 'innovation' —buzzwords often associated with fintech Autumn 2021 ¹⁶⁵ Ibid 337, Boadle recognises that these benefits are already evident in partnerships such as the innovation hub established by ASIC and the UK Financial Conduct Authority. ¹⁶⁶ For example, the ASX is moving from the existing 'CHESS' settlement system in favour of distributed ledger technology, which is recognised as smart contract compatible. See ASX (n 149) 4. ¹⁶⁷ See above n 89 and accompanying text. and other applications of this kind. Rather, in the case of smart contracts there appear to be real benefits derived from automation of common contractual processes, namely in the integration of risk control techniques into the fabric of the contract. This is illustrated by discussion of the selected use cases, each of which further raise discrete practical and legal issues associated with implementation. What is evident is the considerable industry drive behind the development of smart contracts. As an innately interdisciplinary construct with significant scope for assimilating law, commerce and information technology, the introduction of smart contracts into the mainstream legal lexicon may be jarring for a profession steeped in traditional practices. The signs are, however, that there are those in the vanguard ready to embrace 'a new way of doing old things'.